Chem 116 Lecture 19 11/18/08 (JL)

 Identify the acid on the left and its conjugate base on the right. Similarly, identify the base on the left and its conjugate acid on the right.

$$HPO_4^{2-}(aq) + HCO_3^{-}(l) \implies CO_3^{2-}(aq) + H_2PO_4^{-}(aq)$$
(a) (b) (c) (d)

(a) and (d) goes together, and (b) and (c) goes together.

Acid: (b) and (d) Base: (a) and (c)

2. Does equilibrium lies primarily to the right or to the left?

Question 2 data

$$HPO_4^{2-}$$
 $K_a = 3.6 \times 10^{-13}$
 $HCO_3^ K_a = 5.61 \times 10^{-11}$
 $H_2PO_4^ K_a = 6.23 \times 10^{-8}$

... HPO_2^- is base. HCO_3^- and $H_2PO_4^-$ are acid

You need to know which acid is stronger.

- -Bigger K_a on left => Equilibrium lies on the right.
- -Bigger K_a on right => Equilibrium lies on the left.

Therefore, equilibrium lies primarily to the left.

Equilibrium doesn't necessarily have to be at pH7. Equilibrium= moles of acid is equal to moles
of base.

Example of strong base calculations

Similar to Practice Exercises, pp. 683-684

- a) What is the pH of a 0.0012 M NaOH solution?
- b) If the pH of a solution of the strong base $Sr(OH)_2$ is 10.46, what is the concentration of $Sr(OH)_2$ in mol/L?
 - (a) Strong base (Arrhenius base)
 NaOH when added to water completely dissociates 1 mol NaOH to water -> 1 mol Na⁺ and 1 mol OH⁻ 0.0012M OH⁻ solution.

```
[OH^{-}] = 0.0012M
    pOH = -log(0.0012) = 2.92
    pH + pOH = 14
    =>pH = 14 - 2.92 = 11.08
                                                                   ...check sig.fig.
(b) pH = 10.46
    Goal:
             Get the concentration of Sr(OH)_2.
             Find concentration of [OH<sup>-</sup>].
             Get that from pOH
             Get pOH from the pH
    pOH = 14 - pH = 14 - 10.46

[OH^{-}] = 10^{-pOH} = 10^{-3.54} = 0.000288M
                                                                            3.54
    0.000288 \text{ (mol OH}^{-}/\text{L)} \times (1 \text{ mol Sr(OH})_{2})
                                                                   0.00014M is the Sr(OH)_2 concentration.
                                     (2 mol OH-)
```